Ce contenu est protégé par le droit d'auteur. Toute reproduction à l'extérieur des forums Alloprof est interdite et pourra être considérée comme une violation du droit d'auteur.
La première étape dans cet exercice sera de trouver l'équation des deux droites. Pour cela, tu peux utiliser les points donnés. Tu dois suivre ces étapes pour trouver l'équation de la droite AB et l'équation de la droite CD :
Ce contenu est protégé par le droit d'auteur. Toute reproduction à l'extérieur des forums Alloprof est interdite et pourra être considérée comme une violation du droit d'auteur.
Ensuite, pour trouver le point d'intersection de deux droites, c'est-à-dire les coordonnées (x, y) du point où les deux droites se croiseront, où elles se toucheront, on doit résoudre unsystème d'équations.
Je te donne un exemple similaire où on a terminé la première étape et on connait maintenant l'équation des deux droites :
Ce contenu est protégé par le droit d'auteur. Toute reproduction à l'extérieur des forums Alloprof est interdite et pourra être considérée comme une violation du droit d'auteur.
Pour trouver le point d'intersection de la droite bleue et de la droite mauve (le point rouge ?), tu dois utiliser la méthode de comparaison pour résoudre ce système d'équations. Nous avons :
Nous avons ainsi trouvé la coordonnée en x du point d'intersection des deux droites. Il nous reste maintenant à trouver la coordonnée en y. Pour cela, on peut utiliser l'une des deux équations de notre système (n'importe laquelle, le résultat sera le même), et calculer y pour x=-4.
$$y=\frac{1}{2}x+3 $$
$$y=\frac{1}{2}(-4)+3 $$
$$y=\frac{-4}{2}+3=-2+3=1$$
ou
$$y=-x-3$$
$$y=-(-4)-3=4-3=1$$
Voilà! Le couple solution de ce système est donc (-4, 1).
Explication d'Alloprof
Cette explication a été donnée par un membre de l'équipe d'Alloprof.
Salut!
La première étape dans cet exercice sera de trouver l'équation des deux droites. Pour cela, tu peux utiliser les points donnés. Tu dois suivre ces étapes pour trouver l'équation de la droite AB et l'équation de la droite CD :
Ce contenu est protégé par le droit d'auteur. Toute reproduction à l'extérieur des forums Alloprof est interdite et pourra être considérée comme une violation du droit d'auteur.
Consulte ceci au besoin : Trouver la règle d'une fonction affine | Secondaire | Alloprof
Ensuite, pour trouver le point d'intersection de deux droites, c'est-à-dire les coordonnées (x, y) du point où les deux droites se croiseront, où elles se toucheront, on doit résoudre un système d'équations.
Je te donne un exemple similaire où on a terminé la première étape et on connait maintenant l'équation des deux droites :
Ce contenu est protégé par le droit d'auteur. Toute reproduction à l'extérieur des forums Alloprof est interdite et pourra être considérée comme une violation du droit d'auteur.
Pour trouver le point d'intersection de la droite bleue et de la droite mauve (le point rouge ?), tu dois utiliser la méthode de comparaison pour résoudre ce système d'équations. Nous avons :
$$\left\{\begin{matrix} y_{1}=\frac{1}{2}x+3 \\y_{2}=-x-3 \end{matrix}\right. $$
On cherche un point tel que \((x_{1},y_{1}) = (x_{2}. y_{2})\). On commence par former une équation à une variable en comparant les deux règles :
$$ y_{1} = y_{2}$$
$$\frac{1}{2}x+3 = -x-3$$
On peut maintenant résoudre cette équation à une variable.
On place les termes semblables du même côté de l'équation :
$$\frac{1}{2}x+3 +x= -x-3+x$$
$$(\frac{1}{2}+1)x+3 = -3$$
$$(\frac{1}{2}+\frac{2}{2})x+3 = -3$$
$$\frac{3}{2}x+3 = -3$$
On déplace la constante 3 de l'autre côté de l'équation :
$$\frac{3}{2}x+3-3 = -3-3$$
$$\frac{3}{2}x= -6$$
On élimine le coefficient de la variable x :
$$\frac{3}{2}x \div \frac{3}{2}= -6\div \frac{3}{2}$$
$$x= -6\div \frac{3}{2}$$
$$x= -6\times \frac{2}{3}$$
$$x= \frac{-6\times2}{3}$$
$$x= \frac{-12}{3}$$
$$x= -4$$
Nous avons ainsi trouvé la coordonnée en x du point d'intersection des deux droites. Il nous reste maintenant à trouver la coordonnée en y. Pour cela, on peut utiliser l'une des deux équations de notre système (n'importe laquelle, le résultat sera le même), et calculer y pour x=-4.
$$y=\frac{1}{2}x+3 $$
$$y=\frac{1}{2}(-4)+3 $$
$$y=\frac{-4}{2}+3=-2+3=1$$
ou
$$y=-x-3$$
$$y=-(-4)-3=4-3=1$$
Voilà! Le couple solution de ce système est donc (-4, 1).
Voici une fiche sur cette notion qui pourrait t'être utile : La résolution de systèmes d'équations linéaires | Secondaire | Alloprof
Dans ton exercice, tu peux suivre la même démarche pour trouver le point d'intersection!
Je te laisse essayer avec ces indices. J'espère que c'est plus clair pour toi! :)
Suggestions en lien avec la question
Suggestion en lien avec la question
Voici ce qui a été trouvé automatiquement sur le site, en espérant que ça t’aide!