Secondaire 4 • 1a
Je n’arrive pas a former l’équation pouvez-vous de donner des explications afin d’arriver a trouver équation
Je n’arrive pas a former l’équation pouvez-vous de donner des explications afin d’arriver a trouver équation
Explication d'Alloprof
Cette explication a été donnée par un membre de l'équipe d'Alloprof.
Salut!
Tout d'abord, posons la variable "t" comme étant le temps écoulé en minutes depuis l'ouverture de l'écluse.
Au départ, le premier bassin contient 21 litres d'eau (V1 = 21) et le second bassin en contient 6 litres (V2 = 6). Le débit de l'eau est de 0,45 litre par minute (D = 0,45).
Après un certain temps \(t\) en minutes, le volume d'eau dans le premier bassin devient : \(V1 - Dt\) litres (puisque le niveau de l'eau diminue) et dans le second bassin : \(V2 + Dt \)litres (puisque le niveau de l'eau augmente).
En d'autres mots, après \(t\) minutes, nous avons (21-0,45t) litres dans le premier bassin, et (6+0,45t) dans le second bassin.
Nous cherchons à savoir après combien de temps \(t\) le premier bassin contiendra deux fois plus d'eau que le second. On peut traduire cela par l'équation suivante :
$$V1 - Dt = 2 * (V2 + Dt)$$
$$ 21-0,45t = 2(6+0,45t) $$
En résolvant cette équation, nous pourrons alors trouver le temps \(t\) nécessaire pour que le premier bassin contienne deux fois plus d'eau que le second.
J'espère que c'est plus clair pour toi! Si tu as d’autres questions, n’hésite pas à nous réécrire! :)
Suggestions en lien avec la question
Suggestion en lien avec la question
Voici ce qui a été trouvé automatiquement sur le site, en espérant que ça t’aide!