Secondaire 3 • 4a
Bonjour!
J'ai deux droites
1) y=5x-33
2) 15-2y=x
Comment je fais pour trouver le point où elles se croisent?
Merci!
Bonjour!
J'ai deux droites
1) y=5x-33
2) 15-2y=x
Comment je fais pour trouver le point où elles se croisent?
Merci!
Alternative : la méthode de substitution, si tu connais, car la variable y est déjà isolée.
Tu remplaces y par 5x-33 dans la deuxième équation:
D'où 15-2(5x-33)=x .
Tu résous et tu termines en calculant y.
Explication d'Alloprof
Cette explication a été donnée par un membre de l'équipe d'Alloprof.
Salut LionAimable8726!
Pour trouver le point d'intersection entre les 2 droites, tu peux utiliser la méthode de comparaison!
Je vais t'expliquer comment faire!
En premier, il faut que tu exprimes les deux équations en fonction de la même variable. Il est plus évident de les exprimer en fonction de x.
Tu vas donc devoir trouver la forme de la deuxième droite pour avoir y=mx + b.
Pour ce faire, tu n'as qu'à isoler y. Je te laisse un indice: le b devrait être +7,5 :)
Ensuite tu vas comparer les deux fonctions en posant que y1 =y2. Comme ça!
$$y_1 = y_2$$
$$5x-33 = mx_2 +7,5$$
Comme il reste seulement une variable (le x) tu peux l'isoler pour trouver la coordonnée en x du point de croisement!
Après avoir trouvé la coordonnée en x, tu remplaces cette valeur dans une des deux équations pour trouver le point en y
Tu pourras ensuite mettre le point sous la forme (x, y)
Et tu auras ta réponse!
Tu peux consulter cette fiche pour plus de détails!
Thomas T
Suggestions en lien avec la question
Suggestion en lien avec la question
Voici ce qui a été trouvé automatiquement sur le site, en espérant que ça t’aide!