Skip to content

Zone d’entraide

Question de l’élève

Secondaire 5 • 1a

Salut on est dans le chapitre des fonctions quadratiques et je ne comprends vraiment pas cette question

Vous disposez de 450 m de clôture pour construire un enclos rectangulaire dont un côté est adjacent à une rivière. Déterminez les dimensions de l’enclos d’aire maximale que vous pouvez construire avec ces 450 m de clôture, si le côté adjacent à la rivière n’a pas besoin d’être clôturé.

Mathématiques
avatar
avatar

{t c="richEditor.description.title"} {t c="richEditor.description.paragraphMenu"} {t c="richEditor.description.inlineMenu"} {t c="richEditor.description.embed"}

Explications (2)

  • Options
    1a March 2024 modifié

    Bonjour!

    Voici mes explications avec une aide visuelle. J'aime bien illustrer mes problèmes: je les comprends mieux ainsi.

    QuartzAuthentique.jpg

    J'espère t'avoir aidé.

  • Explication d'un(e) pro de la Zone d'entraide Explication d'un(e) Pro

    Explication d'un(e) pro de la Zone d'entraide

    Tu peux faire confiance à cette explication, car elle est donnée par une personne identifiée comme étant fiable par Alloprof.

    Options
    Pro de la zone d’entraide • 1a

    Bonjour QuartzAuthentique8197

    Merci d'utiliser la zone d'entraide pour répondre à ta question!

    Pour résoudre ce problème, tu vas devoir trouver le K de ta fonction ainsi que les 2 zéros. Les 2 zéros te permettrons de trouver une première mesure de ton enclos et le K ta deuxième. Selon moi, ce que je viens de t'expliquer est une des méthodes les plus facile pour résoudre ce problème.

    Si tu n'a pas bien compris, n'hésite pas à le partager.

    Je t'ajoute aussi cette fiche Alloprof qui te permettra de mieux comprendre la fonction du second degré:


    J'espère que j'ai pu répondre à ta question.

    N'hésite pas à poser des questions à nouveau sur la zone d'entraide.

    Bonne chance!

Poser une question