Skip to content

Zone d’entraide

Question de l’élève

Secondaire 2 • 1a

Bonjour, je n'arrive vraiment pas a comprendre l'algerbe. Est ce que quelqu'un pourrait m'expliquer les etapes de la resolution d'une expression algebrique clairement ?

Mathématiques
avatar
avatar

{t c="richEditor.description.title"} {t c="richEditor.description.paragraphMenu"} {t c="richEditor.description.inlineMenu"} {t c="richEditor.description.embed"}

Explications (3)

  • Explication d'Alloprof

    Explication d'Alloprof

    Cette explication a été donnée par un membre de l'équipe d'Alloprof.

    Options
    Équipe Alloprof • 1a February 2024 modifié

    Salut!


    Pour résoudre une équation algébrique, tu dois toujours placer les termes semblables d'un côté de l'équation, et les constantes de l'autre côté. Prenons un exemple pour mieux comprendre.

    On a l'équation :

    $$ 5x - 6 = 2x + 14 $$


    Les termes semblables sont les termes ayant les mêmes variables (les mêmes inconnus). et ces variables sont affectées des mêmes exposants. Donc, nos termes semblables sont ici \(5x\) et \(2x\), puisqu'ils contiennent tous les deux la variable x affectée d'un exposant 1.

    Les constantes sont les termes qui ne contiennent pas de variables, soit ici \(-6\) et \(14\).

    Notre but sera d'abord de placer d'un côté de l'égalité les deux termes semblables, et de l'autre côté les constantes. Pour ce faire, nous allons commencer par déplacer un des deux termes semblables de l'autre côté (peu importe lequel), et ce, en effectuant l'opération inverse.

    Déplaçons \( 2x\) du côté gauche de l'égalité. Puisque l'opération inverse d'une addition est une soustraction, nous allons devoir soustraire \(2x\) de chaque côté de l'équation, comme ceci :

    $$ 5x - 6 -2x= 2x + 14 -2x$$


    En le soustrayant de chaque côté, cela nous permet de l'éliminer du côté droit de l'équation :

    $$ 5x - 6 -2x= 14 $$


    On a ainsi déplacé le terme \( 2x\) afin qu'il soit du même côté que son terme semblable.

    Passons maintenant aux constantes. Nous allons déplacer la constante \(6\) de l'autre côté. Puisque l'opération inverse d'une soustraction est une addition, nous allons donc additionner \(6\) de chaque côté :

    $$ 5x - 6 -2x+6= 14+6 $$

    $$ 5x -2x= 14+6 $$


    On a ainsi réussi à placer nos termes semblables d'un côté et nos constantes de l'autre! La prochaine étape sera d'additionner les constantes, et de soustraire les coefficients des termes semblables.

    Commençons par les constantes, 14 + 6 = 20, on a alors l'équation :

    $$ 5x -2x= 20 $$

    Puis on soustrait les coefficients des termes semblables.

    $$ (5-2)x= 20 $$

    $$ 3x= 20 $$


    Finalement, la dernière étape sera d'éliminer le coefficient de la variable x, soit \(3\), et ce, en effectuant l'opération inverse d'une multiplication, soit une division :

    $$ \frac{3x}{3} = \frac{20}{3} $$

    $$x= \frac{20}{3} $$


    Voilà!

    Tu peux laisser ta réponse finale sous forme de fraction impropre comme celle-ci (le numérateur est supérieur au dénominateur), ou tu peux la transformer en un nombre fractionnaire ou un nombre décimal, il faudra alors vérifier ce que l'exercice ou ton professeur te demandera de faire.

    Voici des fiches sur ces notions qui pourraient t'être utiles :


    J'espère que c'est plus clair pour toi! Sinon, n'hésite pas à nous réécrire! :)

  • Options
    1a

    Bonjour PerleAlpha1547,

    Il existe plusieurs méthodes pour résoudre une équation algébrique. Une des méthodes souvent utilisée est la méthode de la balance. Je t'invite à consulter la vidéo suivante pour obtenir l'explication de cette méthode: https://www.youtube.com/watch?v=ZBjDcTOVZsc&t=5s

    La fiche suivante t'apprendra également les étapes de la méthode de la balance, mais te présentera également les autres méthodes qui peuvent être utilisées. https://www.alloprof.qc.ca/fr/eleves/bv/mathematiques/les-methodes-generales-de-resolution-d-equati-m1452

    Bonne écoute et bonne lecture!

  • Options
    Secondaire 2 • 1a

    Nous pouvons facilement utiliser la méthode de la balance.

    Par exemple tu dois résoudre cette opération: x+5*3=32

    Ici tu dois trouver la valeur de x.

    Pour ce faite, tu peux commencer par multiplier 5 par 3. Ce qui nous donne 15.

    Puis tu dois soustraire ce 15 à la partie du x, ainsi qu'à l'autre partie pour garder la balance en équilibre.

    Donc dans cette opération, la valeur de x serait 17.

    J'espère que cela t'a aidé!

Poser une question