Skip to content

Zone d’entraide

Question de l’élève

Secondaire 5 • 3a
16284420673898411255115850210590.jpg

Hi I have trouble with this question. I think my notes don't give me enough informations.


This is the explanation I have

16284421196183681184456464605495.jpg

But how do I get theses values


Thank you

Physique
avatar
avatar

{t c="richEditor.description.title"} {t c="richEditor.description.paragraphMenu"} {t c="richEditor.description.inlineMenu"} {t c="richEditor.description.embed"}

Explications (3)

  • Options
    3a

    Ramzi,

    coquilles à corriger:

    ici \[G\cdot m=\frac{g_1}{r_1^2}\]

    ici \[ g_2=\frac{\frac{g_1}{r_1^2}}{r_2^2}=\frac{g_1}{r_1^2\times r_2^2} \]

    et ici \[ g_2=\frac{9.8}{(1)^2\times (4)^2}=\frac{9.8}{(4)^2} \]

  • Explication d'Alloprof

    Explication d'Alloprof

    Cette explication a été donnée par un membre de l'équipe d'Alloprof.

    Options
    Équipe Alloprof • 3a August 2021 modifié

    Hi !

    To get the same answer, you need a specefic formula that you can find by following this link :



    The link is in french, but you just need to look at the formula :

    $$ g=\frac{G\cdot m}{r^2} $$

    In this case, the only thing you need to know is that \(r\) is the distance between the core of the planet and the altitude. Knowing that we're comparing to point for the same planet, \(G\) and \(m\) are the same. Now you can calculate the \(g\) for each situation. The first one is at the surface :

    $$ g_1=\frac{G\cdot m}{r_1^2} $$

    The second situation will be like this :

    $$ g_2=\frac{G\cdot m}{r_2^2} $$

    If you try to put the first formula in the second one (replace \(G\cdot m\)), you will get this :

    $$ G\cdot m=\frac{g_1}{r_1^2} $$

    $$ g_2=\frac{\frac{g_1}{r_1^2}}{r_2^2}=\frac{g_1}{r_1^2\times r_2^2} $$

    We know that \(g_1\) is 9.8, but we don't know the value for \(r_1\) and \(r_2\). We will assume that \(r_1\) is equal to one. This means that \(r_2\) is equal to 4 :


    image.png


    You can now enter the values to obtain this final form :

    $$ g_2=\frac{9.8}{(1)^2\times (4)^2}=\frac{9.8}{(4)^2} $$

    It gives you the same answer than your notes ! If you have any other questions, do not hesitate !

  • Options
    Secondaire 1 • 3a August 2021 modifié

    You just take the weight of Earth radius and transform it on g. After, you multiply it by 3. And you have the answer ;-)!

Poser une question