Skip to content

Concours Relooke ton coin d'études

En posant une question scolaire sur la Zone d'entraide, tu pourrais gagner un prix de 350 $! Voir les détails

Voir les détails

Zone d’entraide

Question de l’élève

Secondaire 5 • 1a
Capture d’écran, le 2021-04-12 à 11.32.09.png

Bonjour, je ne comprends pas ce numéro. Merci de votre aide! Il faut prouver que le côté gauche est égal au côté droit...

Mathématiques
avatar
avatar

{t c="richEditor.description.title"} {t c="richEditor.description.paragraphMenu"} {t c="richEditor.description.inlineMenu"} {t c="richEditor.description.embed"}

Explications (1)

  • Explication d'Alloprof

    Explication d'Alloprof

    Cette explication a été donnée par un membre de l'équipe d'Alloprof.

    Options
    Équipe Alloprof • 1a April 2021 modifié

    Salut!


    Pour répondre à ta question, tu dois connaître les identités trigonométriques ! Pour ce faire, il existe une fiche alloprof sur ce sujet :



    Je vais essayer de te donner une piste sur comment procéder. Tu peux commencer du côté que tu veux de l'opération, mais je te conseille de partir du côté gauche (celui contenant \(cos^{2}(x)+tan^{2}(x)-1\). Je te conseille aussi d'utiliser les identités suivantes :


    \[tan(x)=\frac{sin(x)}{cos(x)}\]

    \[tan^{2}(x)=\frac{sin^{2}(x)}{cos^{2}(x)}\]

    \[sin^{2}(x)+cos^{2}(x)=1\]


    Avec ces identités, tu devrais pouvoir compléter la preuve. (INDICE : un exemple similaire à ton exercice est disponible sur alloprof)


    Tu devrais commencer comme suit :


    \[cos^{2}(x)+tan^{2}(x)-1=tan^{2}(x)sin^{2}(x)\]

    \[(cos^{2}(x)-1)+tan^{2}(x)=tan^{2}(x)sin^{2}(x)\]

    \[-sin^{2}(x)+tan^{2}(x)=tan^{2}(x)sin^{2}(x)\]

    \[-sin^{2}(x)+\frac{sin^{2}(x)}{cos^{2}(x)}=tan^{2}(x)sin^{2}(x)\]


    Si tu veux un dernier indice, tu dois trouver un dénominateur commun afin de mettre les termes de gauche sur la même fraction. Je te laisse essayer par toi même et si tu as encore des questions, n'hésite pas !