Finding the Rule of a Logarithmic Function

Concept sheet | Mathematics

Finding the Equation of the Logarithmic Function of the Form |y=a \log_c (b(x))|

To find the equation of a logarithmic function of the form |y=a \log_c \big(b(x)\big),| it is necessary to know some information about the values of the parameters |a,| |b,| and |c.|

Example

The values of |b| and |c| are known

Find the equation of the logarithmic function that passes through the point |(5, -3)| if the value of the parameter |b| is |2| and the value of the base |c| is |10|.

Replace |\color{blue}{b}|, |\color{red}{c}|, |\color{green}{x}|, and |\color{purple}{y}| in the equation.
||\begin{align}\color{purple}{y} &= a \log_{\color{red}{c}} \big(\color{blue}{b}(\color{green}{x})\big)\\ \color{purple}{-3} &= a \log_{\color{red}{10}} \big(\color{blue}{2} \times \color{green}{5}\big)\\-3 &= a \end{align}||
Answer: the equation is |y=-3 \log \big(2(x)\big).|

Example

The values of |a| and |c| are known

Find the equation of the logarithmic function passing through the point |(-12, 8)| if the value of the base |c| is |2| and the parameter |a| is |-4|.

Replace |\color{magenta}{a}|, |\color{red}{c}|, |\color{green}{x}|, and |\color{purple}{y}| in the equation.
||\begin{align}\color{purple}{y} &= \color{magenta}{a}\log_{\color{red}{c}} \big(b(\color{green}{x})\big)\\ \color{purple}{8} &= \color{magenta}{-4} \log_{\color{red}{2}} \big(b \times \color{green}{-12}\big) \end{align}||
Isolate the expression containing the logarithm.
||-2 = \log_2 (-12b)||
Switch to exponential form to isolate |b|.
||\begin{align}2^{-2} &= -12b\\ \dfrac{2^{-2}}{-12} &= b\\ \dfrac{\text{-}1}{48}&=b \end{align}||
Answer: the equation is |y= -4 \log_2 \left(\dfrac{\text{-}1}{48}(x) \right).|

Example

The value of |a| is known

Find the equation of a logarithmic function that goes through the points |(0.25; -4)| and |(128, 8).|

Let the parameter |a| equal |4|. Replacing |a| with |4,| results in the equation |y= 4 \log_c \big(b(x)\big).|

Replace |x| and |y| with the coordinates in the equation.

The result is |-4 = 4 \log_c (b \times 0.25)| and |8 = 4 \log_c (b \times 128).|

Next, isolate |b| in both equations.
For the first equation:
||\begin{align}-1 &= \log_c (0{.}25b)\\c^{-1} &= 0.25b\\ \dfrac{c^{-1}}{0.25}&=b \end{align}||
For the second equation:
||\begin{align}2 &= \log_c (128b) \\ c^{2} &= 128b\\ \dfrac{c^{2}}{128} &= b \end{align}||
Next, use the comparison method.
||\dfrac{c^{-1}}{0.25} = \dfrac{c^{2}}{128}||
Rearrange the fractions:
||\begin{align} \dfrac{128}{0.25} &= \dfrac{c^2}{c^{-1}}\\ 512 &= c^3\\ \sqrt[3]{512} &= \sqrt[3]{c^3}\\ 8 &= c \end{align}||
Therefore, the result is that the base |c=8.|

Simply replace |c| in one of the starting equations to find the value of |b.|
||b = \dfrac{c^{-1}}{0.25} = \dfrac{8^{-1}}{0.25} = \dfrac{1/8}{1/4} = \dfrac{1}{2}\\ b = \dfrac{c^2}{128} = \dfrac{8^2}{128} = \dfrac{64}{128} = \dfrac{1}{2}||
Answer: The equation of the function is |y= 4 \log_8 \left(\dfrac{1}{2}(x)\right).|

Tip

When the value of a single parameter is known, the best approach is to use the coordinates of two points located on the curve. Then, use the comparison method.

Finding the Equation of a Logarithmic Function in Standard Form

Formula

There are two ways to express the equation of a logarithmic function in standard form.

||y= \log_c \big(b(x-h)\big)||

OR

||y= \log_c (\pm(x-h)) + k||

To convert from one form to another, use the laws of logarithms.

Find out more!

Consider the following concrete example.

||\begin{align} y &= \log_c \big(b(x-h)\big) && \text{first standard form}\\\\ &= \log_2 \big(-16(x-8)\big) && \text{equation we are working with}\\\\ &= \log_2 16 + \log_2 (-(x-8)) && \text{logarithm of a product} \\\\ &= 4 + \log_2 (-(x-8))&& \text{calculating the logarithm}\\\\ &= \log_2 (-(x-8)) + 4 && \text{rearranging the terms} \\\\ y &= \log_c (\pm(x-h)) + k && \text{second standard form} \end{align}||

Definition of the Logarithmic Base |c|

Since the logarithmic function is the inverse of the exponential function, it also has an equivalent base.

Important!

In a logarithmic function, there is a multiplying factor at work with each change in the independent variable when the dependent variable increases by |1|. This multiplying factor corresponds to the base |c| of the function.

Example

Here is a table of values of the function |y=\log_9 x.|

Picture

Note that the multiplying factor is |9|, which corresponds to the base |c| of the function |y=\log_9 x.|

Case Where |y=\log_c (\pm(x-h))+k|

Rule

Here are the steps to follow in order to find the equation of a logarithmic function in the form |y= \log_c \big(\pm(x-h)\big)+k .|

  1. Find the value of the base |c| by finding the multiplying factor.

  2. Depending on the value of the base |c|, determine whether to use the + or the - in the bracket.

  3. Replace |x| and |y| in the equation of the function with the coordinates of 2 points.

  4. Isolate the parameter |k| in both equations.

  5. Use the algebraic comparison method to find the value of parameter |h.|

  6. Replace |h| in either of the two equations to find the value of parameter |k.|

Example

Here is the table of values of a logarithmic function.

Picture
  1. Find the value of the base |c| by finding the multiplying factor

Picture

Therefore, the base is |c=3.|

  1. According to the value of the base |c|, determine whether to use the + or the - in the bracket

    In this case, the more the values of |x| increase, the more the values of |y| decrease. Since the function is decreasing and the value of the base |c| is greater than |1|, use the sign |-| in the bracket. ||\begin{align} y &= \log_{\color{magenta}{c}} (\color{red}{\pm}(x-h))+k\\ y &= \log_{\color{magenta}{3}} (\color{red}{-}(x-h))+k\end{align}||

  2. Replace |x| and |y| in the equation of the function by 2 points

    Take the points |(0, 2)| and |(-8, 4)| and insert them into the equation. ||\begin{align} 2 &= \log_3 (-(0-h))+k\\ \Rightarrow\ 2 &= \log_3 (h) +k \\\\ 4 &= \log_3 (-(-8-h))+k \\ \Rightarrow\ 4 &= \log_3 (8+h) +k\end{align}||

  3. Isolate the parameter |k| in both equations

    The result is the following |2- \log_3 (h) = k| and |4-\log_3 (8+h) = k.|

  4. Use the algebraic comparison method to find the value of parameter |h|
    ||\begin{align} 2 - \log_{3}{(h)} &= 4 - \log_{3}{(8+h)}\\\\ 2 - 4 &= -\log_{3}{(8+h)} + \log_{3}{(h)} \\\\ -2 &= \log_{3}{(h)} - \log_{3}{(8+h)} && \text{Rearranging the logarithms}\\\\ -2 &= \log_{3}\left(\dfrac{h}{8+h}\right) && \text{Logarithm of a quotient}\\\\ 3^{-2} &= \dfrac{h}{8+h} && \text{Use exponential laws}\\\\ \dfrac{1}{3^{2}} &= \dfrac{h}{8+h} && \text{Definition of a negative exponent} \\\\ \dfrac{1}{9} &= \dfrac{h}{8+h} \\\\ 8+h &= 9h && \text{By cross multiplication} \\\\ 8 &= 8h \\\\ h &= 1 \end{align}||

  5. Replace |h| in either of the two equations to find the value of the parameter |k| 
    ||\begin{align}
    4 &= \log_3 (-(-8-h))+k \\\\
    4 &= \log_3 (-(-8-1)) + k && \text{Replace } h \text{ with its value} \\\\
    4 &= \log_3 (9) + k\\\\
    4 &= 2 + k && \text{Calculate the logarithm}\\\\
    2&=k \end{align}||

Therefore, the conclusion is that the equation of the logarithmic function is |y= \log_3 (-(x-1))+2.|

Case Where |y= \log_c \big(b(x-h)\big)|

Using the asymptote and any two points on the curve

Rule
  1. Replace |h| with the value of the asymptote.

  2. Substitute in each of the points to create a system of equations.

  3. Find the value of the base |c| using the comparison method.

  4. Use one of the two equations from step 2 to find the value of the parameter |b.|

Example

Find the equation of the logarithmic function represented in the following Cartesian plane.

Logarithmic function that goes through points (0, 1), (4, 2) and (16, 3).
  1. Replace |h| with the asymptote’s value||\begin{align} y &= \log_c \big(b(x-\color{green}{h})\big) \\y &= \log_c \big(b(x-\color{green}{\text{-}2})\big) \\y &= \log_c \big(b(x\color{green}{+2})\big) \\ \end{align}||

  2. Substitute in each of the points to create a system of equations

||\begin{align} &1^{\text{st}}\text{ coordinate pair: }(0,1) && 2^{\text{nd}}\text{ coordinate pair: }(16,3) \\\\ y &= \log_c \big(b(x+2)\big) && y = \log_c \big(b(x+2)\big) \\\\ 1 &= \log_c \big(b(0+2)\big) && 3 = \log_c \big(b(16+2)\big) && \text{Substitute in } x \text{ and } y \\\\ 1 &= \log_c (2b) && 3 = \log_c (18b) \\\\ c^1 &=2b && c^3 =18b \\\\ \dfrac{c}{2} &= b && \dfrac{c^3}{18} = b && \text{Isolate } b \end{align}||

  1. Find the value of the base |c| using the comparison method||\begin{align} b & = b \\\\ \frac{c}{2} & = \frac{c^3}{18} \\\\ \frac{18}{2} & = \frac{c^3}{c} \\\\ 9 & = c^2 && \text{exponent properties} \\\\ \sqrt9 & = \sqrt{c^2} \\\\ 3 & = c\end{align}||

  2. Use one of the two equations from step 2 to find the value of the parameter |b| ||b = \dfrac{c}{2} = \dfrac{3}{2} = 1.5||

Finish by writing the equation of the logarithmic function: |y = \log_3 \big(1.5(x+2)\big).|

Finding the Rule of a Logarithmic Function With 2 Points

Finding the Rule of a Logarithmic Function With 2 Points

Moments in the video:

  • 00:00-The Role of Parameters
  • 00:46-Exponential and Logarithmic Notations
  • 01:18-Determine Parameter h
  • 01:31-Create a System of Equations
  • 02:47-Determine Parameter c
  • 03:29-Determine Parameter b

Using the asymptote, the |x|-intercept, and any one point of the curve

Rule
  1. Find the value of the parameter |b.|

  2. Substitute the points |(x,y)| in the equation.

  3. Determine the value of the base |c.|

Example

Find the equation of the logarithmic function with the following characteristics.

  • The equation of the asymptote is |x=-1.|

  • Its |x|-intercept is |-\dfrac{1}{2}.|

  • It goes through the point |(4,1).|

  1. Find the value of the parameter |b|
    Given the value of the parameter |h| and the |x|-intercept, the value of parameter |b| can be found. Therefore, ||\begin{align}
    \dfrac{1}{b} + h & = \text{x-intercept} \\\\
    \dfrac{1}{b} -1 &= -\dfrac{1}{2}\\\\
    \dfrac{1}{b} &= \dfrac{1}{2} \\\\
    b &=2 \end{align}||

  2. Substitute the points |(x,y)| in the equation
    Since the curve passes through |(4,1),| the result is the following. ||\begin{align}
    y & = \log_c \big(2(x+1)\big) \\
    1 &= \log_c \big(2(4+1)\big)\end{align}||

  3. Find the value of the base |c|
    According to the equation obtained previously, ||\begin{align}
    1&= \log_c \big(2(4+1)\big) \\
    c^1 &= 2(4+1)\\
    c^1 &= 10 \\
    c & = 10\end{align}||

Answer: The equation of the function is |y= \log_{10} \big(2(x+1)\big).|

Finding the Rule of a Logarithmic Function From the Zero and 1 Point

Finding the Rule of a Logarithmic Function From the Zero and 1 Point

Moments in the video:

  • 00:00-The role of parameters
  • 00:42-Exponential and logarithmic notation
  • 01:14-Determine h
  • 01:33-Determine b
  • 03:11-Determine c